

Best Practices for SGRT Billing

2026 Version

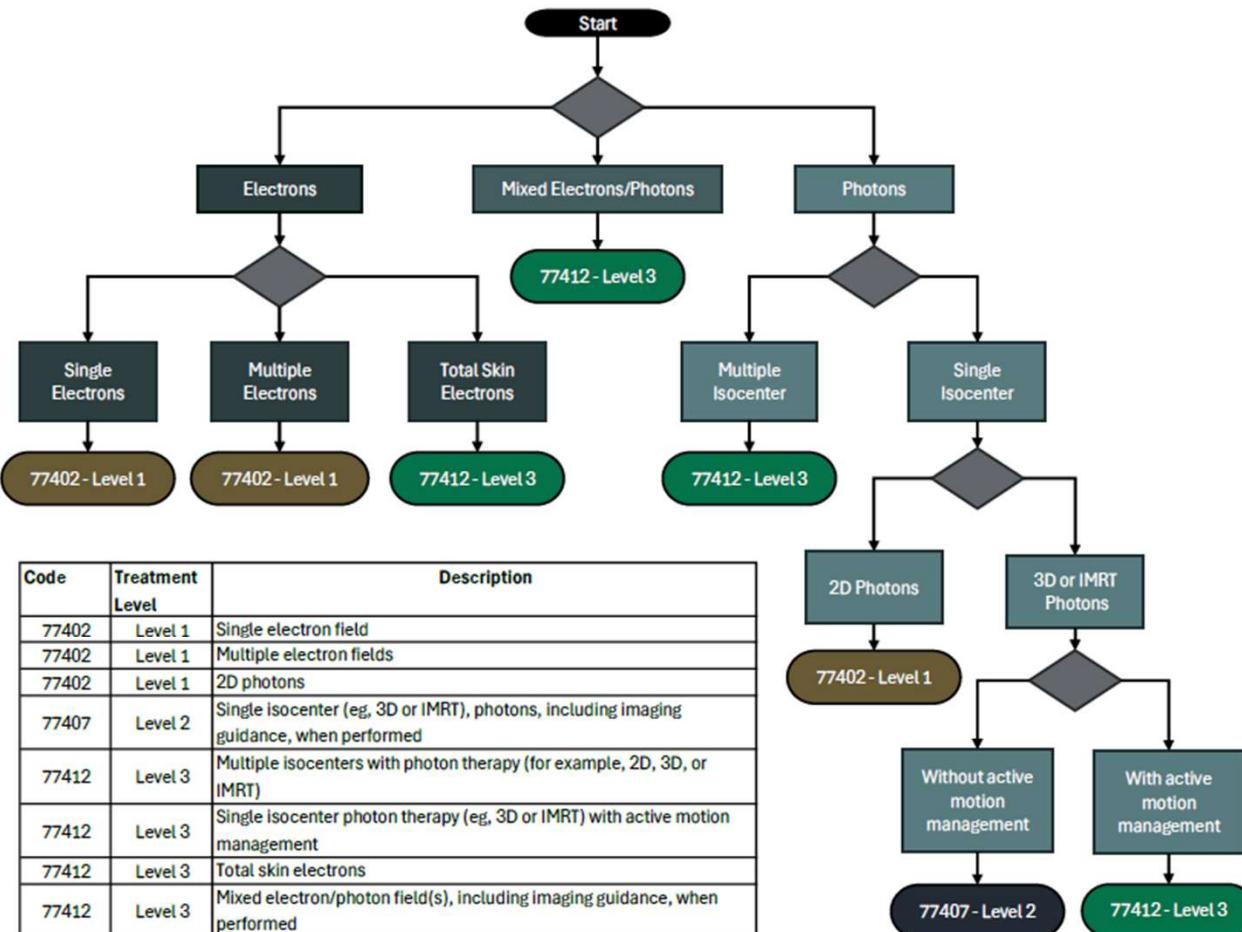
Disclaimers

01

Every practice is unique, and it is the Client's responsibility to implement these opinions appropriately to Client's specific practice and circumstances. Client is not under the obligation to implement any recommendations made by RBS. Recommendations made by RBS are our opinions only, and Client should consult an attorney regarding the application of these recommendations in Client's specific market and circumstance. RBS is not a law firm and is not providing legal advice to Client.

02

Client agrees to indemnify and hold RBS, its affiliates and owners, and their respective officers, directors, agents, employees and representatives (each an "RBS Indemnified Party") harmless from and against any and all claims, actions, liabilities, losses, costs and expenses of any nature whatsoever, including reasonable attorneys' fees and other costs of investigating and defending any such claim or action ("Losses"), which may be asserted against any of RBS Indemnified Parties, in connection with Client's decision to implement any recommendations made by RBS.


03

CPT copyright 2025 American Medical Association. All rights reserved. Fee schedules, relative value units, conversion factors and/or related components are not assigned by the AMA, are not part of CPT, and the AMA is not recommending their use. The AMA does not directly or indirectly practice medicine or dispense medical services. The AMA assumes no liability for data contained or not contained herein. CPT is a registered trademark of the American Medical Association.

2026 Radiation Oncology Treatment Code Changes

2D, 3D, and Intensity Modulated Radiation Therapy (IMRT)

*Not to be used for Proton Therapy, Stereotactic, or Brachytherapy

2026 MPFS Treatment Codes and Rates

Non-Stereotactic Daily Treatment

77402 Level 1

**\$79.49 MPFS
\$104.24 OPPS**

Radiation treatment delivery;
Level 1 (for example, single
electron field, multiple electron
fields, or 2D photons),
including imaging guidance,
when performed

77407 Level 2

**\$317.64 MPFS
\$394.05 OPPS**

Radiation treatment delivery;
Level 2, single isocenter (eg,
3D or IMRT), photons,
including imaging guidance,
when performed

77412 Level 3

**\$391.46 MPFS
\$564.51 OPPS**

Radiation treatment delivery; Level 3,
multiple isocenters with photon therapy
(for example, 2D, 3D, or IMRT) OR
**a single isocenter photon therapy
(eg, 3D or IMRT) with active motion
management,**
OR total skin electrons, OR mixed
electron/photon field(s), including
imaging guidance, when performed

Image Guidance Including SGRT

Professional Charge

**77387-26
\$36.74 MPFS**

Guidance for localization of target volume for delivery of radiation treatment, includes intrafraction tracking, when performed

Active Motion Management

AMA Definition

Active Motion Management

Treatment delivery with active motion management (77412) includes intra-fraction localization and tracking of the target(s) or patient motion to optimize beam delivery (eg, intra-fraction motion, surface guidance). Intra-fraction motion management utilizes fiducials or imaging to monitor the target or organs at risk during the breathing cycle (eg, during a deep inspiration breath hold). This method minimizes organ motion and allows more accurate delivery of radiation to mobile targets and active avoidance of OAR.

Surface Guidance

Surface guidance for active motion management is a technique that allows the linear accelerator to perform gating (eg, optical) during treatment delivery using the body surface contour as a surrogate for internal target motion and OAR avoidance. Surface guidance is one method to effect active motion management, although there are other methods as well.

Note: This is not for patient set-up prior to treatment delivery (eg, not to replace tattoos).

Active Motion Management

ASTRO Definition

Treatment Delivery with active motion management (CPT code 77412) includes intra-fraction localization and tracking of the target(s) or patient motion to optimize beam delivery (e.g., intrafraction motion, surface guidance). Intrafraction motion management utilizes fiducials or imaging to monitor the target or organs at risk during the breathing cycle (e.g., during a deep inspiration breath hold). This method minimizes organ motion and allows more accurate delivery of radiation to mobile targets and active avoidance of organs at risk.

Surface guidance for active motion management is a technique that allows the linear accelerator to perform gating (e.g., optical) during treatment delivery using the body surface contour as a surrogate for internal target motion and OAR avoidance. Use of surface guidance or abdominal compression for patient set up prior to treatment delivery alone does not qualify as active motion management (e.g., not to replace tattoos).

Active Motion Management

Documentation Requirements

- Active motion management must be ordered by the physician on each patient it is utilized.
 - Best practice: add a section for active motion management in the physician's clinical treatment planning document.
 - Include a paragraph outlining the medical necessity information that is tailored to each patient.
- Ensure the active motion management documents are added each fraction of treatment.
 - Best practice: the document template needs to include, at a minimum, data showing the patient was monitored throughout treatment delivery.
 - Each treatment document must be signed by the physician prior to next beam on to meet criteria for billing the professional service.

Sample AlignRT Statement

The AlignRT system was used to position the patient immediately prior to treatment and for active motion management during treatment.

The following parameters are couch shifts in standard couch coordinates, which were computed by AlignRT, in order to assess the accuracy of patient setup and to prevent geographical miss with the radiation beam.

Sample AlignRT Document

Single Page

alignRT® Treatment Report

Report Date/Time: 8/19/2022 11:59 AM

PATIENT DETAILS		SYSTEM DETAILS / SETTINGS	
Name:	[REDACTED]	PCR Number:	249-2741
Patient ID:	J210094	Start Time:	8/19/2022 8:11:51 AM
Date of Birth:	11/9/1980	End Time:	8/19/2022 8:41:50 AM
		Total Duration:	00:29:58

STATEMENT
The AlignRT system was used to position the patient immediately prior to treatment and to track the patient during treatment in 3D mode.
The following parameters are couch shifts in standard couch coordinates, which were computed by AlignRT, in order to assess the accuracy of patient set-up and to prevent geographical miss with the radiation beam.

FINAL MONITORING SESSION			
Protocol:	ChestWallDIBH	Start Time:	8/19/2022 8:26:19 AM
Plan Name:	LSCV5040	End Time:	8/19/2022 8:32:39 AM
Isocentre:	77.6, -243.5, 88.1	Total Duration:	00:06:19

FINAL SCREEN CAPTURE

Time Stamp: 8/19/2022 8:41:45 AM

Page 1 / 1

Sample AlignRT Document

Multi Page 1 of 3

alignRT Treatment Report

Report Date/Time: 07/03/2025 10:38

PATIENT DETAILS		SYSTEM DETAILS / SETTINGS	
Name:	test test	PCR Number:	100-0145
Patient ID:	test1	Start Time:	07/03/2025 10:37:11
Date of Birth:	11/11/1999	End Time:	07/03/2025 10:37:55
		Total Duration:	00:00:44

STATEMENT The AlignRT system was used to position the patient immediately prior to treatment and to track the patient during treatment in 3D mode. The following parameters are couch shifts in standard couch coordinates, which were computed by AlignRT, in order to assess the accuracy of patient set-up and to prevent geographical miss with the radiation beam.

MONITORING SESSION 1

Protocol:	Chest	Start Time:	07/03/2025 10:37:39
Plan Name:	Test	End Time:	07/03/2025 10:37:44
Isocentre:	0.0, 0.0, 0.0	Total Duration:	00:00:04

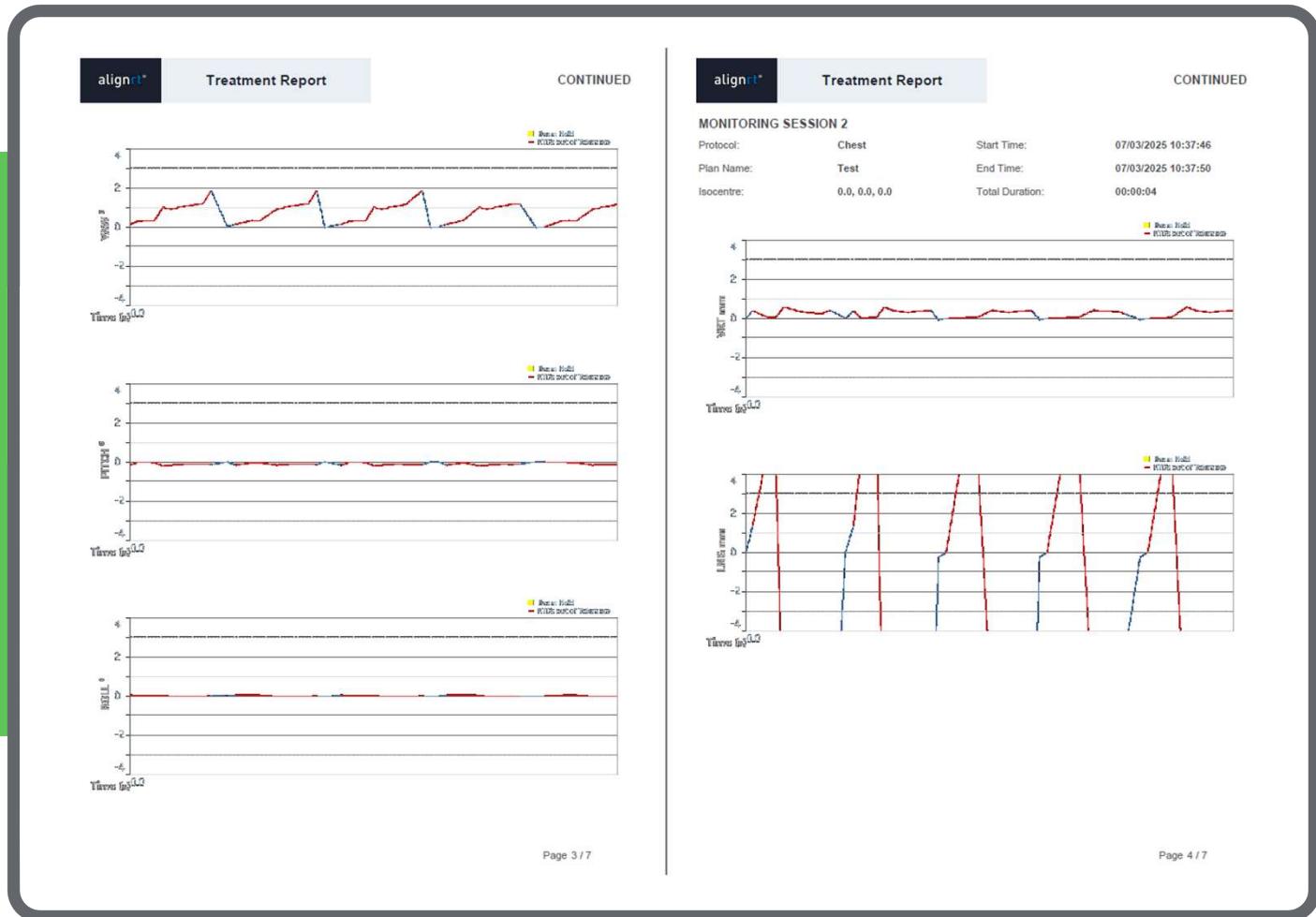
Page 1 / 7

alignRT Treatment Report

CONTINUED

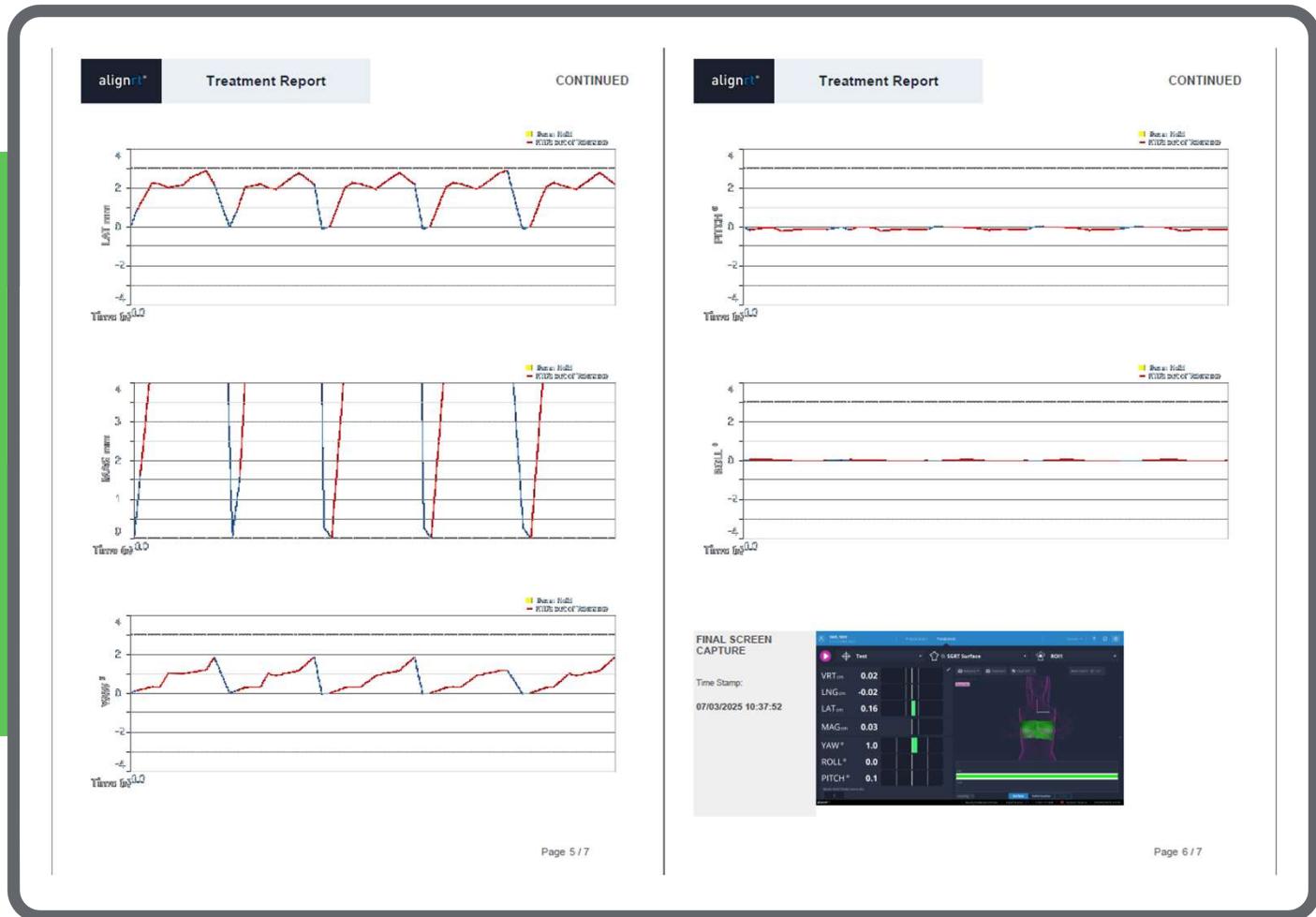
L/R mm

S/I mm


A/P mm

Time (s) 0.0

Page 2 / 7


Sample AlignRT Document

Multi Page 2 of 3

Sample AlignRT Document

Multi Page 3 of 3

Active Motion Management

Key Takeaways

- Medical necessity must be established.
 - Orders for active motion management must be in the chart.
 - A patient-specific statement of medical necessity is strongly encouraged.
- Patient must be monitored throughout beam on.
 - An SGRT document must be saved for each treatment showing the patient was monitored from beam on to beam off.
 - If the patient moves out of tolerance treatment must be paused (manually or automatically).
 - Each SGRT document must be signed by the physician prior to next beam on.

Payer Problems in 2026

Prior authorizations are being downcoded to 77407 due to faulty medical policies.

- Please continue to request P2P calls and appeals to challenge these cases.

Payers are incorrectly denying 77387 with a 26 modifier.

- This includes some Medicare Contractors.
- Some are denying the CPT code both with and without the modifier.

Payer Problems in 2026

Payers are denying 77402/77407/77412 outright in the freestanding setting.

- The denials come through as a zero payment, and the adjustment reason code is not one typically identified as a denial reason.

Payers are denying 2026 claims that have 2025 grandfathered authorizations.

- This is occurring even on cases where a 2026 auth was requested and denied because the 2025 auth was carried forward.

Payer Problems in 2026

Early 2026 Prior Authorization denial trends

January 14, 2026

Based on reports from members, ASTRO is tracking early 2026 prior authorization denials and has identified recurring issues with CPT 77412 (Level 3) and CPT 77387-26 (IGRT). Denials for 77412 have largely stemmed from payer interpretations limiting the code to treatment of multiple anatomical sites, rather than multiple isocenters for a single site, as well as global application of fraction limits and inconsistent coverage for clinically necessary scenarios such as multiple joints or breast treatments using active motion management. EviCore has noted that non-specific documentation ("DIBH" alone) and inappropriate use of "urgent" designations may contribute to denials.

Separately, CPT 77387-26 denials have been issued based on claims that IGRT is bundled with treatment delivery or that the professional component is not separately payable in hospital settings, resulting in inconsistent denial rationales across both freestanding and hospital-based facilities. To submit an inappropriate denial, please email [Emilio Beatley](#) or [Alex Costa](#).

Additional Notes

- There is no NCCI P2P edit between 77387 and any of the plan codes on the MPFS side.
 - Historically there were edits between IGRT and plan codes.
 - Professional IGRT and plan charges can be billed on the same date of service when the plan and first treatment are done the same day.
- Check your commercial payment rates on the revised codes.
 - Many payers are paying freestanding claims for 77402-77412 using rates from prior to 2015 when the G-codes were adopted for daily treatment.
 - Some payments rates have been as low as $\frac{1}{2}$ the Medicare rate on 77387. Outside of Aetna this code is new for professional claims and freestanding centers.

Code	Description
77301	<p>Intensity modulated radiotherapy plan, including dose-volume histograms for target and critical structure partial tolerance specifications</p> <p>NCCI Validation Results: No NCCI edit; Check CPT® coding guidelines to make sure code is allowed.</p> <p> + Modifiers + CPT® Assistant + Lay Term + My Specialty Coding Alert Related Articles + MPFS Physician + Path Lab Fee Schedules + ICD-10-CM Crossreference </p>
77387	<p>Guidance for localization of target volume for delivery of radiation treatment, includes intrafraction tracking, when performed</p> <p>NCCI Validation Results: No NCCI edit; Check CPT® coding guidelines to make sure code is allowed.</p> <p> + Modifiers + CPT® Assistant + Lay Term + My Specialty Coding Alert Related Articles + MPFS Physician + Path Lab Fee Schedules + ICD-10-CM Crossreference </p>

VisionRT Resources

Authorization and claim appeal text

The NCCN Guidelines, Version 5.2026, for Prostate Cancer strongly support the use of image guidance to reduce treatment-related toxicity (Principles of Radiation Therapy section, page 71). Specifically, Item 3 under this section highlights the value of real-time intrafraction volumetric tracking to enhance treatment accuracy and safety.

Peer-reviewed literature further supports the clinical benefit of active motion management, including surface-guided radiation therapy (SGRT), in prostate radiotherapy. A relevant recent publication includes:

Macedo-Jiménez et al. (2025) <https://doi.org/10.1186/s13014-025-02638-3> analyzed intra-fractional surface motion during adaptive prostate radiotherapy. The study documented consistent vertical shifts over the course of extended treatment sessions and highlighted temporal discrepancies between surface and internal target positions. While the authors note that SGRT alone may have limitations for inter-fractional alignment, their findings clearly demonstrate the presence and progression of intra-fraction motion during prostate radiotherapy—underscoring the importance of real-time motion monitoring and management techniques such as those provided by AlignRT.

The NCCN Guidelines, Version XX.2026, for Invasive Breast Cancer emphasize the importance of individualizing RT planning and delivery (optimizing delivery of individual therapy section, page 60). Item 4 under this section specifically includes the use of respiratory control and cardiac blocking to protect the heart and surrounding critical structures.

Several studies support the use of active motion management via Surface Guided Radiation Therapy (SGRT) in breast radiotherapy, including:

1. Ono et al. (2021) <https://doi.org/10.1186/s13014-021-01777-7> quantified motion during DIBH for breast cancer using cine EPID and variance component analysis. They calculated a PTV margin of 3.59 mm, showing that even under breath-hold conditions, motion is present and measurable.
2. Michalski et al. (<https://doi.org/10.1111/j.1754-9485.2012.02434.x>) conducted in 2012 a systematic review on inter- and intra-fraction motion during breast radiotherapy. With focus in intra-fractional motion, they report that while average motion remains within a 5 mm tolerance, individual variations can be significant, underscoring the need for daily motion management. This publication sets the scene while the most subsequent reviews focus more on motion management strategies (e.g. <https://doi.org/10.3233/XST-180472>, <https://doi.org/10.1088/1361-6560/ab2ba8>).
3. Gough E, Ashworth S, Moodie T, et al. <https://dx.doi.org/10.1016/j.meddos.2024.03.002> shows that DIBH reduces right coronary artery and lung radiation dose in right breast cancer radiotherapy.
4. Rice L, Harris S, Green MM, Price PM <https://dx.doi.org/10.1259/bjrcr.20150038> shows that DIBH used in right breast radiation therapy minimizes liver dose.

Additionally, the textbook Short Course Breast Radiotherapy, published by Springer (<https://link.springer.com/book/10.1007/978-3-319-24388-7>), notes: "The conventional WBI fractionation scheme is 2 Gy per fraction. Several WBI fractionation schemes, including hypofractionated WBI (HWBI), have been investigated. HWBI offers advantages to the patient such as reduced out-of-pocket costs as well as to radiation oncology departments such as the ability to schedule and treat more patients per year on a given linear accelerator. ... Generally, HWBI requires better control of the patient's motion during delivery. The reduced number of fractions in HWBI requires more precise and accurate patient positioning."

Questions & Answers

Leah M. Harlin, CPC
Director of Shared Services
Leah.Harlin@RadiationBusiness.com

Radiation Business Solutions
www.RadiationBusiness.com
(615) 746-4711

